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Abstract

Chaos is a revolutionary concept, which brings a novel strategy of science for researchers. In this paper, a chaotic
neural network is proposed and the simulated annealing strategy also embedded to construct an annealed chaotic neural
network (ACNN) and apply to the clustering problem. In addition to retain the characteristics of the conventional neural
units, the ACNN displays a rich range of behavior reminiscent of that observed in neurons. Unlike the conventional
neural network, the ACNN has rich range and flexible dynamics, so that it can be expected to have higher ability of
searching for globally optimal or near-optimum results. However, the chaotic neural network does not stay in the global
solution due to the chaotic dynamical mechanism being not clear. A chaotic mechanism with annealing strategy is
introduced into the Hopfield network to construct a ACNN for expecting a better opportunity of converging to the
optimal solution in this paper. In experimental results, unlike the fuzzy clustering methods getting local minima
solutions, the ACNN method can always obtain the near-global optimal results. From the classification of real
multispectral images, the ACNN can obtain suitable results. © 2001 Pattern Recognition Society. Published by Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Clustering algorithms attempt to organize the training
patterns into clusters such that patterns within a cluster
are more similar to each other than those belonging to
different clusters. In many fields such as segmentation,
pattern recognition, and vector quantization, clustering
process is an indispensable step in these problems. Since
the range of clustering application is so large, there is no
fundamental clustering problem formulation due to vari-
ant relationship between the input objects. There are
several algorithms based upon the least-mean-squares
criterion for clustering problem such as traditional
strategies, fuzzy clustering methods, and probability
clustering algorithms. Generally speaking, conventional
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methods such as K-means (C-means) [1] and ISODATA
[2] are traditional clustering methods in which a sample
belonging only one cluster. FCM [3-6], PFCM [7,8]
and CFCM [9] are called fuzzy clustering methods in
which every sample belonging all clusters with different
degrees of membership while the probability clustering
algorithms such as simulated annealing [ 10-13] in which
every sample belonging all clusters with different degrees
of probability.

The Hopfield network model, proposed by Hopfield
and Tank [14,15], has been extensively applied to many
fields [16-19] for optimization problem in the last dec-
ade. In the application of optimization problem, this
network exploits the massive parallelism of neurons.
However, due to it is a stable system with gradient
descent mechanism, the results obtained are not satisfied
[20]. The Hopfield model has no scheme to escape the
local minima and may be trapped on one of them.

The chaotic dynamic in chaotic neural networks has
been discussed in the past studies [20-25] in the light of

0031-3203/01/$20.00 © 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

PII: S0031-3203(00)00040-6



1094 J.-S. Lin | Pattern Recognition 34 (2001) 1093-1104

its potential biological functional role. A chaotic neural
network proposed by Aihara et al. [23] effectively
searches the global minimum using the chaotic searching
mechanism without stacking in undesirable local min-
ima. However, the network does not stay in the global
solution due to the chaotic dynamical mechanism being
not clear.

The chaotic mechanism with annealing strategy is in-
troduced into the Hopfield network to construct an an-
nealed chaotic neural network (ACNN) for expecting a
better opportunity of converging to the optimal solution
in this paper. In the optimization problem, most of sys-
tems implement the straightly forward algorithm that
easily traps into a local minimum. In order to resolve this
problem, Kirkpatrick et al. [26] used the Monte Carlo
technique to propose the simulated annealing algorithm
in 1983. In 1953 simulated annealing strategy was first
proposed by Metropolis et al. [27] to simulate molecular
processes. The simulated annealing technique had non-
zero probability to go from one state to another, moves
temporarily toward a worse state so as to escape from
local traps. The probability function depends on the
temperature and the energy difference between the two
states. With the probabilistic hill-climbing search ap-
proach, the simulated annealing technique has a better
probability to go to a higher energy state at a higher
temperature. In the simulated annealing algorithm, the
annealing mechanism is also named stochastic simulated
annealing due to the optimal cooling schedules being
processed with stochastic scheme. Geman et al. [28] have
proven that the energy function can be converged to the
global minimum only if the cooling schedule is decreased
slowly and inverse proportion to the logarithm of iter-
ation number. In 1994 Rosen and Nakano [29] proposed
a very fast annealing algorithm which could improve
the performance of the original stochastic simulated
annealing.

In this paper, the Hopfield-model net embedded the
chaotic mechanism with annealing strategy called
ACNN is proposed so that the parallel implementation
to find optimal solution for clustering problem is feasible.
The cluster problem can be cast as an optimal problem
that may also be regarded as a minimization of a cri-
terion defined as a function of the least-squares Euclid-
ean distance between training pattern and cluster center.
The ACNN is trained to classify the input patterns
into feasible cluster when the defined energy function
converges to globally optimal or near-global optimal
solution. The training patterns can be mapped to a two-
dimensional Hopfield neural network. In the ACNN, the
columns represent the number of clusters and the rows
represent the training patterns. In the context of cluster-
ing problem, a training pattern can be as the input of all
neurons at a row in the two-dimensional net that is fully
connected structure. After a number of iterations and
bifurcation of chaotic dynamics, the neuron states are

refined to reach near optimal result when the defined
energy function is converged. However, a training pat-
tern does not necessarily belong to only one cluster.
Instead, a certain probability grade belonging to proper
class is associated with every pattern. In addition to the
annealing strategy, the chaotic behavior in the chaotic
network is controlled to escape from local minima re-
sults. Consequently, the energy function can be con-
verged into a global or near global minimum to produce
satisfactory clusters. Compared with conventional and
fuzzy cluster techniques, the major strength of the pre-
sented ACNN is computationally more promising due to
the chaotic characteristics. In a simulated study, the
ACNN is described to have the capability for clustering
problem and shown the globally optimal results.

The rest of this paper is organized as follows. Section 2
reviews the chaotic neural networks; Section 3 proposes
the annealing strategies; Section 4 demonstrated the cha-
otic simulated annealing neural network for clustering
problem; Section 5 presents several experimental results;
and finally, Section 6 gives the discussion and con-
clusions.

2. Chaotic neural network

The conventional neural units can not generate the
dynamics of great complexity occupied by the biological
neurons. A chaotic neural unit has the nonlinear recur-
sive equation that features to display the rich range of
behavior reminiscent. In other words, the chaotic neural
network has rich dynamics with various coexisting at-
tractors, not only of fixed points but also periodic and
even chaotic attractors, it can escape from local minima
and converging to the global-minimum or near-global-
minimum result. The study of chaotic neural network is
important not only as a model for nonlinear systems with
many degrees of freedom, but also from the viewpoint of
biological information processing and possible engineer-
ing application [30]. Several chaotic neural networks
have been proposed in the past [30-36]. Although the
chaotic neural network is a promising technique for
optimization problem, the converging process has not
been satisfactorily solved in relation to chaotic dynamics.
It is difficult to decide how to control the chaotic behav-
ior in a chaotic neuron for converging to a stable equilib-
rium point corresponding to an acceptably near-optimal
solution. To harness the chaotic dynamics, Chen and
Aihara [35] proposed a chaotic simulated annealing
(CSA) for combinatorial optimization problem. Different
from the conventional stochastic simulated annealing,
the chaotic simulated annealing is a deterministic
optimizer that converges from chaotic state at high tem-
perature through successive bifurcations during temper-
ature reducing process to an equilibrium point at low
temperature. In this paper a 2-D chaotic neural network
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embedded with the Feigenbaum’s bifurcation formula
[37] and self-feedback connection weight, which has an
ability of parallel synchronous computation in the bifur-
cation states. The model of the chaotic neural network
can be demonstrated as follows:

1
ux,i(k) = 1 + e_vx,x(k)/l’

1)

vi(k + 1) = d sin[nw, ;(k)] + Z Wiz, iy, (k)

+ Ix,i - Tx,i(k)ux,i(k)> (2)

where D, (k) = >, iWeiy ity j(k) + I, uy; is the output
of neuron (x,i), v,; the internal state of neuron (x,i),
Wy.i,y,; the connection weight from neuron (y, j) to (x, i),
I,.; the input bias of neuron (x, i),  the damping factor of
nerve membrane (0 <J < 1), T,;(k) the self-feedback
connection weight, A the steepness parameter of the out-
put function (4 > 0), and = the ratio of the circumference
of a circle to its diameter.

This structure can be directly mapped into the Hop-
field neural network. The chaotic dynamics in an output
state with distinct self-feedback connection weights for
this chaotic neural model are shown in Fig. 1. The values
of parameters are set as 6 = 0.3, D =0 and 1 = 1/250
during 4000 iterations for all pictures in Fig. 1. For a
self-feedback connection weight in an interconnection
strength T = 0.08 chaotic activity is generated, while
T < 0.08 the neuron state u(t) gradually transient from
chaotic characteristics through periodic bifurcation to an
equilibrium point (T = 0.0399). From Fig. 1 we can find
that different values for the self-feedback connection
weight may result in variant output states. This phenom-
enon indicates that the chaotic behavior is not easily
harnessed in the chaotic neural network.

3. Annealed chaotic neural networks

Although the chaotic neural network is a promising
technique for optimization problem, the converging pro-
cess has not been satisfactorily solved in relation to
chaotic dynamics. It is difficult to decide how to control
the chaotic behavior in a chaotic neuron for converging
to a stable equilibrium point corresponding to an accep-
tably near-optimal solution. To harness the chaotic dy-
namics, Chen and Aihara [35] proposed a transient
chaotic neural network (TCNN) embedded a simulated
annealing strategy for combinatorial optimization prob-
lem. Different from the conventional stochastic simulated
annealing, the chaotic simulated annealing is a determin-
istic optimizer that converges from chaotic state at high
temperature through successive bifurcations during tem-
perature reducing process to an equilibrium point at low
temperature.

In order to control the chaotic dynamical mechanism,
the simulated annealing strategy is also embedded into
the proposed chaotic neural network in the last section
for expecting a better opportunity of converging to the
optimal solution. In the simulated annealing process, a
feasible cooling schedule is required. The reaching ther-
mal equilibrium at low temperature might take a very
long time. Geman et al. [28] demonstrated that if the
temperature is lowered at the rate:

T(0)

0= fog+ 17

G

where T(0) is a constant and k is the number of iterations,
the algorithm will converge to the set of states of least
energy. Jalali et al. [12] presented that the value of the
constant T(0) for which Geman et al. were able to
guarantee convergence is in general very high, so that the
convergence time becomes impractically slow. Jalali et al.
used a schedule very similar to that of Geman et al., given
in Eq. (8), but with a steeper descent at higher iterations
as follows:

7(0)

T0 = fogte + 1

(4)
Jalali et al. showed that the value of T'(0) in Eq. (4) has to
be kept as small as possible, so that the number of
iterations can be held within a reasonable limit. Unfortu-
nately, the cooling schedules specified by Egs. (3) and (4)
with high value of T(0) are too slow to be of practical use
[38]. Kirkpatrick et al. [26] proposed a cooling schedule
specified a finite sequence of values of the temperature
and a finite number of transitions attempted at each
value of the temperature. The decrement function of
cooling schedule is defined by

T(k) = @FT©0), k=1,2,..., (5)

where o (0.8 < o < 1), is a constant smaller but close to
unit. The author [39] proposed another decrement func-
tion of cooling schedule as follows:

1 k —
T(k) =551 [B + tanh(]T(k — 1), k=1,2,..., (6)

where o is a constant same as the one in Eq. (5). And f§ is
also a constant. Eq. (6) can result in a faster decrement
speed than those resulted from Eq. (5). Fig. 2 shows the
reduction process using different decrement functions
described from Egs. (3)-(6) with o = 0.98, initial constant
T(0) = 4000, and 60 iterations. From Fig. 2, we can find
Eq. (6) results in the fastest decrement speed.

In this paper, the simulated annealing strategy was
embedded into Eq. (2) to construct the ACNN. In the
ACNN, the self-feedback connection weight was de-
creased with the decrement function proposed by the
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Fig. 1. The bifurcation states of a neuron with the variant self-feedback connection weights T’
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Fig. 2. The reduction process using different decrement func-
tions described from Egs. (3)-(6) with T(0) = 4000 within 100
iterations.

author [39] shown in Eq. (6). The ACNN is defined as
follows:

1

u i(k) = o

@

Uxi(k + 1) = 0 sin[noy (k)] + Dyi — Twi(K)[uxi(k) — Io]

®)

and

T,.k)= ﬁ [B + tanh(e)] T,k — 1), k=1,2,...,

©)

where D, (k) =Y, iWaiy ity (k) + I, ;u; is the output
of neuron (x,i), v,; the internal state of neuron (x,i),
wy,; the connection weight from neuron (y,j) to (x,i),
I,.; the input bias of neuron (x, i),  the damping factor of
nerve membrane (0 <o < 1), T,;(k) the self-feedback
connection weight, A the steepness parameter of the out-
put function of neuron (x,i) (A > 0), « the positive con-
stant and (0.8 < « < 1), f the positive constant, and = the
ratio of the circumference of a circle to its diameter.

And a single neuron model in the ACNN can also be
expressed as

1
u(k) = 14 e vz (10)
v(k + 1) = 6 sin[nv(k)] + D — T(k) [u(k) — Io], (11)

1 k —
T(k) = 51 [B + tanh@)]T(k — 1), k=1,2,.... (12)

One can study the dynamics regimes of the model in
detail. Since the purpose in this paper is mainly to show
the potential application of the model to optimization
problems of various scales. To study the chaotic dynam-
ics of a single neuron model in the ACNN, the value of
parameters are fixed as 0 =0.3; 4 =1/250; I, = 0.65;
T(0) = 0.08 just vary a, f, and D. The dynamics regimes
are illustrated by bifurcation diagrams for output state
with respect to self-feedback connection weight in a
single neuron. Figs. 3(a) and (b) show the time evolutions
of the output of a single neuron and the self-feedback
connection weight when o« = 0.998, = 500, D = 0 and
o =0.9998, B =500, D =0, respectively. Fixed points,
periodic orbits and complex oscillation can be detected in
these figures. The chaotic dynamics also disappears
quickly due to the self-feedback connection weight de-
creasing rapidly with a small value of « that is shown in
Fig. 3(a). On the other hand, in Fig. 3(b), the chaotic
dynamics of in turn lasts longer owing to a larger value of
o. Therefore, the constant « can govern the bifurcation
speed of the chaotic neuron.

4. Application to the clustering problem

The ACNN used the two-dimensional Hopfield neural
network architecture with chaotic simulated annealing to
classify the training patterns to generate feasible clusters
in clustering problem. In order to increase the capability
of the proposed approach, the energy function is for-
mulated on the basis of within-class scatter matrix, a con-
cept widely used in pattern classification. Where, the
within-class scatter matrix is defined by the average Eu-
clidean distance between training pattern and cluster
center within the same cluster. Let u, ; be the probability
state of the (x,i)th neuron and w,;,; present the inter-
connected weight between neuron (x,i) and neuron (y, i)
in a two-dimensional neuron array. A neuron (x, i) in the
network receives weighted inputs wy ;,,,; from each neur-
on (y,i) and a bias I, ; from output. The total input to
neuron (x, i) is computed as

Netx.i = |Zx - z Wx,i;y,il’ly,i|2 + Ix,i- (13)

y=1

The modified Lyapunov energy function of the two-
dimensional Hopfield neural network is given by

2

1
E=-
2

n c n
Z Z Ux,i|Zx — Z W, isy,illy,i
= y=1

x=1i=1
1 ¢

+ = z Z Ix,iux,ia (14)
2 x=1i=1

where |- | is the average Euclidean distance between train-
ing patterns to cluster center, Zﬁzlwx,i;y,i is the total
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Fig. 3. Time evolutions of single neuron model with variant values « in the ACNN: (a) o = 0.998, f = 500, and D = 0; (b) o = 0.9998,

p =500, and D = 0.

weighted input received from neuron (y, i) in row i, u, ; is
the analog output state at neuron (x, i), respectively. Each
column of this modified Hopfield network represents a
class and each row represents the training pattern. The
network reaches a stable state when the modified
Lyapunov energy function is minimized. For example, a
neuron (x,i) in a maximum probability state indicates
that training pattern z, belongs to class i.

The objective function, used to generate a suitable
clustering that has a minimum average distance between
training pattern and the cluster centroid within class, is
given by

" 1

DY T

y=1

u

c
Z Ux,i

1

i

1i

In Eq. (15), each state u, ; is looked upon as the probabil-
ity of finding training sample z, currently occupied by
class i undergo random thermal perturbations. As each
training sample can be occupied by some classes with
different probabilities. To simplify the updating process
of neuron states, the sigmoid function displayed in Eq. (7)
was replaced by the normalized manner shown in Eq.
(19). That is, every raw can have at most 1. In other
words, the summation of states in the same row equals 1.
It also ensures that only n vectors will be classified into
these ¢ clusters. That is the network must match the
following constraints:

and

n c

> Y ug=n
x=1 i=1
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Therefore, using the normalized method the objective
function of the ACNN can be further simplified as

c n 1 2

Z ZylUy,i

=Yy

Comparing Eq. (16) with the modified cost function
Eq. (14), the synaptic interconnection weights and the
bias input can be obtained as

E:% g (16)

x=1i=1

1

Wity = o Zys
Zh=1”h,i

(17)

and

I,;,=0. (18)
In order to control the dynamic mechanism, the
simulated annealing strategy is embedded into this net-
work. For the purpose of improving the computation
performance in the 2-D neuron array using the ACNN
for clustering problem, the probability grade of neural
state of the training sample z, occupied by class i can
then be modified from Eq. (5) and normalized as follows:

e~ vi()/4

uy (k) = Te e
o

(19)

Table 1

1099

And the ACNN can further be defined as follows for the
clustering problem:

1. Input a set of training samples Z = {z;,z,,...,2,}, the
number of cluster ¢, and randomly set the internal
states for all neurons.

2. Start with an initial temperature T(0) and randomly
initialize the probabilities for all neurons.

3. Calculate the new internal states for all neurons using
Eq. (8).

4. Change the output for all neurons using Eq. (19).

5. Decrease T with the annealing factor T'(k) shown in
Eq. (9) iteratively.

6. Repeat steps 3-5 until the energy function is conver-
gent.

5. Experimental results

The Butterfly example given by Ruspini [40] and Jou
[41] is considered to see the performance of the fuzzy
methods FCM, PFCM, CFHNN, the proposed algo-
rithm ACNN, and the TCNN proposed by Chen and
Aihara [35]. Tables 1 and 2 list 15 input patterns in R
Patterns 7-9 construct a bridge between the wings of
the butterfly. The membership grades of different fuzzy

The training patterns of Butterfly and membership grades with ¢ = 2 after convergence in different fuzzy c-means algorithms

Patterns m=1.25 m=2.0
FCM PFCM CFHNN FCM PFCM CFHNN
X Zx Uy Ha H1 U2 Ha Ha My H2 251 Ha M Ha
1. (0,0) 0.000 1.000  0.000 1.000  0.000 1.000  0.022 0978  0.034 0.966  0.029 0.971
2. 0,2) 0.000 1.000  0.000 1.000  0.000 1.000 0.001 0.999  0.006 0.996  0.003 0.997
3. 0,4) 0.000 1.000  0.000 1.000  0.000 1.000  0.022 0978  0.034 0.966  0.029 0.971
4. (1, 1)  0.000 1.000  0.000 1.000  0.000 1.000  0.003 0.997 0.016 0984 0.010 0.990
5. (1,2)  0.000 1.000  0.000 1.000  0.000 1.000  0.000 1.000  0.007 0.993  0.003 0.997
6. (1,3)  0.000 1.000  0.000 1.000  0.000 1.000 0.003 0.997 0.016 0.984 0.010 0.990
7. (2,2)  0.000 1.000  0.000 1.000  0.000 1.000  0.020 0.980  0.060 0.940 0.043 0.957
8. (3,2) 0.792 0.208 0.738 0.262  0.555 0.445 0.502 0.498  0.498 0.502  0.498 0.502
9. 4,2) 1.000 0.000  1.000 0.000  1.000 0.000 0.981 0.019 0.939 0.061 0956 0.044
10. 5, 1) 1.000 0.000  1.000 0.000  1.000 0.000  0.997 0.003 0.984 0.016  0.990 0.010
11. (5,2) 1.000 0.000  1.000 0.000  1.000 0.000  1.000 0.000  0.993 0.007  0.997 0.003
12. (5,3) 1.000 0.000 1.000 0.000  1.000 0.000 0.997 0.003 0.984 0.016 0.990 0.010
13. (6, 0) 1.000 0.000  1.000 0.000  1.000 0.000 0.978 0.022  0.966 0.034 0971 0.029
14. 6,2) 1.000 0.000 1.000 0.000  1.000 0.000 0.999 0.001  0.994 0.006 0.997 0.003
15. 6,4) 1.000 0.000  1.000 0.000  1.000 0.000 0.978 0.022  0.966 0.034 0971 0.029
Cluster (0.757, (0.920, (0.825, (0.799, (0.798, (0.792,
0.000) 2.000) 2.000) 2.000) 2.000) 2.000)
Centers (5.063, (5.228, (5.137, (5.206, (5.206, (5.204,
2.000) 2.000) 2.000) 2.000) 2.000) 2.000)
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Table 2

The training patterns of Butterfly and membership/probability grades with ¢ = 2 after convergence in ACNN, TCNN and the optimal

clustering result
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Patterns Optimal clustering ACNN TCNN
X Zx i i My 1) My Mo
1. (0,0) 0.000 1.000 0.000 1.000 0.000 1.000
2. 0,2) 0.000 1.000 0.000 1.000 0.000 1.000
3. 0,4) 0.000 1.000 0.000 1.000 0.000 1.000
4. (1,1 0.000 1.000 0.000 1.000 0.000 1.000
5. (1,2) 0.000 1.000 0.000 1.000 0.000 1.000
6. (1,3) 0.000 1.000 0.000 1.000 0.000 1.000
7. (2,2 0.000 1.000 0.002 0.998 0.001 0.999
8. (3,2 0.500 0.500 0.499 0.501 0.466 0.534
9. 4,2) 1.000 0.000 0.998 0.002 0.999 0.001
10. (5,1 1.000 0.000 1.000 0.000 1.000 0.000
11. (5,2) 1.000 0.000 1.000 0.000 1.000 0.000
12. (5,3) 1.000 0.000 1.000 0.000 1.000 0.000
13. (6,0) 1.000 0.000 1.000 0.000 1.000 0.000
14. (6,2) 1.000 0.000 1.000 0.000 1.000 0.000
15. (6,4) 1.000 0.000 1.000 0.000 1.000 0.000

Cluster Centers

(0.867, 2.000)
(5.133, 2.000)

(0.867, 2.000)
(5.133, 2.000)

(0.876, 2.000)
(5.144, 2.000)

Table 3

The average distortions between the membership/probability grades in the optimal clustering results and those in the variant methods

m=1.25 m=2.0 ACNN TCNN
FCM PFCM CFHNN FCM PFCM CFHNN
Average 57x107%  3.8x1073 20x107% 1.8x107* 876x107* 506x10"*  6x1077 7.7%x1073

distortion A.d

algorithms with fuzzy parameter m = 1.25 and 2.0 for all
fuzzy methods in this paper are listed in Table 1, respec-
tively. The optimal clustering grades, and probability
grades for the ACNN and TCNN are shown in Table 2.
In Table 1, the grades are nearly symmetric with respect
to pattern zg in both data coordinate directions for all
fuzzy algorithms. The lager m, the fuzzier becomes the
membership grades of the final partition. For all fuzzy
algorithms, all of the energy functions trap into local
minima within several iterations. The TCNN can just
converge to near-global minima in all experiments. But
the proposed approach can almost converge to the global
minimum and get two unique cluster centers (0.867,
2.000) and (5.133, 2.000) after several iterations for all
experiments. In addition, it is fairly expected that the
membership grade of pattern zg with respect to both
clusters should be close to 0.5 with a smaller fuzzy para-
meter for all fuzzy algorithms and the probability grade
of pattern zg with respect to both clusters also close to 0.5

for the TCNN. But the probability grade of pattern
zg with respect to both clusters almost equals to 0.5 in the
proposed algorithm ACNN.

To observe the performance for all methods, the aver-
age distortions between the membership/probability
grades in the optimal clustering result ant those in differ-
ent approaches are calculated and listed in Table 3. The
average distortion is defined as follows:

LS S — 0)

nxc /=

ad=

where a.d is the average distortion, n the number of
training samples, ¢ the number of clusters, u,; the mem-
bership/probability grade at the neuron (x,i) for proper
method in this paper, and i, ; the membership/probabil-
ity grade at the neuron (x,i) in the optimal clustering
result.

From Table 3, we can see that the proposed ACNN
algorithm can obtain the minimum average distortion.
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In another viewpoint, the chaotic dynamics could be
influenced by different parameters. From simulation re-
sults, the neuron states display the bifurcation phenom-
enon when 0.01 < T(k) < 1.6 and 0 < ¢ < 1. The chaotic
characteristics are shown in Fig. 4 within 4000 itera-
tions in which 6 was changed with d(k + 1) = 0.9955(k)
and 6(0) = 0.6. In Fig. 3, the output state converges
to an equilibrium point with the same bifurcation man-
ner controlled by the proposed cooling schedule for
the self-feedback connection weight. Instead of con-
trolling T(k), the bifurcation processes are exhibited
various manners with fixed T(k) using a cooling
schedule to decrease 6. Therefore, harness the chaotic
dynamics with ¢ is not suitable for the chaotic neural
network.

In Fig. 5, we can see that the energy functions in the
fuzzy algorithms will either decrease or retain its energy

[ e R LD R LR EEEE ]
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(a) convergence curve of the energy for different fuzzy c-means algorithms
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(b) convergence curve of the energy for the annealed chaotic neural networks.

Fig. 5. The convergence curve of the energies for different algo-
rithms: (a) convergence curve of the energy for different fuzzy
c-means algorithms; (b) convergence curve of the energy for the
annealed chaotic neural networks.

as a result of each individual update as these approaches
undergoing transitions with a gradient decreasing man-
ner. Therefore, they could easily trap into a local min-
imum. But, the energy functions in the ACNN can escape
from a local minimum to the global or near-global
minimum with the bifurcation characteristics in the cha-
otic dynamics controlled by the simulated annealing
strategy.

To show the performance of ACNN, multispectral
brain image shown in Fig. 6, acquired from a patient with
normal physiology using T',- weighted sequences, is used
for simulation. The multispectal image consists three-
channel images which are formed as 256 x 256 pixels and
8-bit gray levels. The acquisition parameters with differ-
ent repetition time (TR) and echo time (TE) are
TR,/TE; = 1500 ms/57 ms, TR,/TE, = 1500 ms/100 ms,
and TR;/TE; = 1500 ms/75 ms. The cerebral spinal
fluid (CSF) appears brighter than gray and white matters
in T,-weighted image. And the T,-weighted image also
shows the gray matter (GM) slightly brighter compared
with white matter (WM). The number of cluster was
preset 4. The regions indicated background, GM, WM,
and CSF are classified and shown in Fig. 7 for
TR,/TE, = 1500 ms/100 ms image. The simulation was
executed in a Pentium-II-200 personal computer with
C + + language. The classified results were obtained
after about 12 iterations and cost 35 s. Each iteration is
defined that all pixels in the three-channel images are

simulation:
(a) TRy/TE, = 1500 ms/57 ms; (b) TR,/TE, 2500 ms/100 ms;
(c) TR3/TE; = 2500 ms/75 ms.

Fig. 6. Multispectral brain images for
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(b)

Fig. 7. Classified results in TR,/TE, 2500 ms/100 ms image:
(a) gray matter; (b) white matter; and (c) cerebral spinal
fluid.

completely trained. During the first 5 iterations, the neu-
ral states displayed the chaotic dynamics. Then periodic
bifurcation appeared and finally an equilibrium point
was converged in the last 3 iterations.

6. Discussion and conclusions

In this paper, an approach using the Hopfield neural
network imposed by a simulated annealing strategy and
chaotic mechanism (named ACNN) is proposed for clus-
tering analysis. To harness the chaotic dynamics, the
simulated annealing with the proposed cooling schedule
is embedded into ACNN. Accordingly, a near-global
minimum can be obtained while the convergence of
network was still guaranteed in the proposed algo-
rithm. Instead of the stochastic simulated annealing
with decreasing statistic fluctuations based on the
Monte Carlo scheme, the annealing process in the
ACNN is associated with a series of the bifurcation.
It is also unlike the bifurcation mechanism in the con-
ventional chaotic neural network; the ACNN can con-
verge from chaotic state at high temperature through
successive bifurcation’s during high temperature decreas-
ing process to an equilibrium state at low temperature.
In the classification application of multispectral brain
images, the promising results can be obtained using the
ACNN.
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